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1. Introduction

Investigations in coding theory have been made in several directions but one of

the most important directions has been the detection and correction of errors. It

began with Hamming codes [9] for single errors , Golay codes ([5], [6]) for double

and triple random errors and thereafter BCH codes ([7], [8], [10]) were studied for

multiple error correction. There is a long history towards the growth of the subject

and many of the codes developed have found applications in numerous areas of

practical interest. One of the areas of practical importance in which a parallel

growth of the subject took place is that of burst error detecting and correcting

codes. It has been observed that in many communication channels, burst errors
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occur more frequently than random errors. A burst of length b may be defined as

follows:

Definition 1. A burst of length b is a vector whose only non-zero components are

among some b consecutive components, the first and the last of which is non zero.

When in a burst of length b , all the b components, in which the non zero

components are confined, are non zero i.e., all the digits among the b components

are in error, such type of burst is known as solid burst. Solid burst are prevalent

in channels viz. semiconductor memory data[11], supercomputer storage system[2].

A solid burst may be defined as follows:

Definition 2. A solid burst of length b is a vector with non zero entries in some

b consecutive positions and zero elsewhere.

Schillinger[14] developed codes that correct solid burst error. Shiva and Cheng[16]

produced a paper for correcting multiple solid burst error of length b in binary code

with a very simple decoding scheme. Among many, some of the good research on

solid burst can be mentioned such as Bossen[3], Sharma and Dass[15], Etzion[4],

Argyrides, Reviriego, Pradhan and Maestro[1].

It is very clear that the nature of error differs from channel to channel depending

upon the behaviour of channels or the kind of errors which occur during the process

of transmission. There is a need to deal with many types of error patterns and

accordingly codes are to be constructed to combat such error patterns. Though

many works have been done on solid burst of length b or less, the bounds on the

number of parity checks for linear codes over GF(q) detecting and correcting such

errors are not obtained properly. In this paper, the author presents the bounds for
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such codes.

The rest of the paper is organized into two sections. In the second section, the

lower and upper bounds on the number of parity check digits of linear codes that

detect any solid burst of length b or less are obtained. The section 3 presents the

similar bounds for codes correcting such errors.

In what follows a linear code will be considered as a subspace of the space of all

n -tuples over GF(q). The distance between two vectors shall be considered in the

Hamming sense.

2. Codes Detecting Solid Burst errors

We consider linear codes over GF(q) that are capable of detecting any solid burst

error of length b or less. Clearly, the patterns to be detected should not be code

words. In other words we consider codes that have no solid burst error of length

b or less as a code word. Firstly, we obtain a lower bound over the number of

parity-check digits required for such a code. The proof is based on the technique

used in theorem 4.13, Peterson and Weldon [12].

Theorem 1. Any (n, k) linear code over GF(q) that detects any solid burst of

length b or less must have at least logq(1 + b) parity-check digits.

Proof. The result will be proved on the basis that no detectable error vector can

be a code word.

Let V be an (n, k) linear code over GF(q). Consider a set X of all those vectors

such that the some fixed non-zero components are in b or less consecutive positions

starting from the first position.
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We claim that no two vectors of the set X can belong to the same coset of the

standard array; else a code word shall be expressible as a sum or difference of two

error vectors.

Assume on the contrary that there is a pair, say x1 , x2 in X belonging to the same

coset of the standard array. Their difference viz. x1 -x2 must be a code vector.

But x1 -x2 is a vector all of whose non zero components are confined consecutively

to b or less components i.e., x1 -x2 is a solid burst of length b or less, which is

a contradiction. Thus all the vectors in X must belong to distinct cosets of the

standard array. The number of such vectors over GF(q), including the vector of all

zero, is clearly

1 + b(1)

The theorem follows since there must be at least this number of cosets. �

In the following theorem, an upper bound on the number of check digits required for

the construction of a linear code considered in theorem 1 is provided . This bound

assures the existence of a linear code that can detect all solid burst error of length b

or less. The proof is based on the well known technique used in Varshomov-Gilbert

Sacks bound by constructing a parity check matrix for such a code (refer Sacks[13],

also theorem 4.7 Peterson and Weldon [12]).

Theorem 2. There exists an (n, k) linear code over GF(q) that has no solid burst

of length b or less as a code word provided that,

n− k > logq

{ b−1∑
i=0

(q − 1)i
}
.

Proof. The existence of such a code will be shown by constructing an appropriate

(n− k)× n parity-check matrix H . The requisite parity-check matrix H shall be
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constructed as follows:

Select any non-zero (n − k)-tuples as the first j − 1 columns h1 ,h2 ,..., hj−1

appropriately, we lay down the condition to add jth column hj such that hj should

not be a linear sum of immediately preceding consecutive upto b − 1 columns. In

other words

hj 6= uj−1hj−1 + uj−2hj−2 + · · ·+ uj−s+2hj−s+2 + uj−s+1hj−s+1(2)

where s ≤ b , j ≥ s , the coefficients ui ∈ GF (q) are non zero.

This condition ensures that no solid burst of length b or less will be a code word

which thereby means that the code shall be able to detect solid bursts of length b

or less.

The number of ways in which the coefficients ui can be selected, including the

vector of all zeros, is

1 +

b−1∑
i=1

(q − 1)i.(3)

At worst, all these linear combinations might yield a distinct sum.

Therefore a column hj can be added to H provided that

qn−k > 1 +

b−1∑
i=1

(q − 1)i.

or,

n− k > logq

{ b−1∑
i=0

(q − 1)i
}
. �

Example 1. Consider a (4, 2) binary code with the 2 × 4 matrix H which has

been constructed by the synthesis procedure given in the proof of theorem 2 by

taking b = 3, n = 4.

H =

[
1 0 1 0
0 1 0 1

]
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The null space of this matrix can be used to detect all solid bursts of length 3 or

less. It may be verified from error pattern-syndromes table 1 that the syndromes

of all solid bursts of length 3 or less are non zero.

Table 1

Error patterns Syndromes

Solid bursts of length 1

1000 10

0100 01

0010 10

0001 01

Solid bursts of length 2

1100 11

0110 11

0011 11

Solid bursts of length 3

1110 01

0111 10

3. Codes correcting solid burst errors

Out of the two results obtained in this section, the first result gives a lower bound

on the number of check digits required for the existence of a linear code over GF (q)

that corrects all solid bursts of length b or less. The second result gives an upper

bound on the number of check digits which ensures the existence of such a code.

The proof of the first result is based on the technique used in theorem 4.16, Peterson

and Weldon[12]. The proof of the second result is based on the same well known

technique used in Varshomov-Gilbert Sacks bound by constructing a parity check

matrix for such a code (refer Sacks[13], also theorem 4.7 Peterson and Weldon [12]).

Theorem 3. An (n,k) linear code over GF(q) that corrects all solid bursts of length

b or less must have at least logq

{
1 +

b∑
i=1

(n− i + 1)(q − 1)i
}

parity check digits.
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Proof. The proof is based on counting the number of correctable error vectors and

comparing it with the available number of cosets.

We have,

the number of solid bursts of length 1 = n(q − 1)

the number of solid bursts of length 2 = (n− 1)(q − 1)2

the number of solid bursts of length 3 = (n− 2)(q − 1)3

........................................................................

........................................................................

the number of solid bursts of length b = (n− b + 1)(q − 1)b

So, the total number of correctable error vectors including the vector of all zeros is

1 +

b∑
i=1

(n− i + 1)(q − 1)i

For correction, all these vectors must belong to different cosets. The total number

of cosets available is qn−k . Therefore we must have

qn−k ≥ 1 +

b∑
i=1

(n− i + 1)(q − 1)i

Or,

n− k ≥ logq

{
1 +

b∑
i=1

(n− i + 1)(q − 1)i
}
. �

Now what follows is an upper bound on the number of check digits required for

the construction of a linear code discussed in theorem 3. This bound assures the

existence of a linear code that can correct all solid burst error of length b or less.

Theorem 4. There shall always exist an (n, k) linear code over GF(q) that corrects

all bursts of length b or less (n > 2b) provided that

qn−k > 1 +

b∑
i=1

b∑
l=1

(n− l − i + 1)(q − 1)i+l−1(4)
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Proof. The existence of such a code will be proved by constructing an (n− k)×n

parity check matrix H for the desired code as follows.

Select any non zero (n − k) tuple as the first column h1 of the matrix H . After

having selected the first j− 1 columns h1, h2, . . . , hj−1 appropriately, we lay down

the condition to add jth column hj as follows:

hj should not be a linear sum of immediately preceding upto b − 1 consecutive

columns hj−1, hj−2, . . . , hj−b+1 , together with any b or fewer consecutive columns

from amongst the first j − b columns h1, h2, . . . , hj−b i.e.

hj 6= (uj−1hj−1 + uj−2hj−2 + · · ·+ uj−shj−s)

+(vihi + vi+1hi+1 + · · ·+ vi+s′−1hi+s′−1)(5)

where ui, vi ∈ GF (q) are non zero coefficients; s ≤ b − 1, s′ ≤ b and the columns

hi in the second bracket are any b or less consecutive columns among the first

(j − 1− s) columns.

This condition ensures that there shall not be a code vector which can be expressed

as sum (difference) of two solid bursts of length b or less each. Thus, the coefficients

ui form a solid burst of length s and the coefficients vi form a solid burst of length

b or less in a (j − 1− s)-tuple.

The number of choices of these coefficients can be calculated as follows:

If ui is chosen to be a solid burst of length (b−1), then the number of solid bursts

of length b or less in a (j − b)-tuple, corresponding to the coefficient vi , is (refer

theorem 3)

b∑
i=1

(n− b− i + 1)(q − 1)i
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If ui is chosen to be a solid burst of length (b−2), then the number of solid bursts

of length b or less in a (j − b + 1)-tuple, corresponding to the coefficient vi , is

b∑
i=1

(n− b + 1− i + 1)(q − 1)i

Continuing the process, if ui is chosen to be a solid burst of length 0, then the

number of solid bursts of length b or less in a (j − 1)-tuple, corresponding to the

coefficient vi , is

b∑
i=1

(j − 1− i + 1)(q − 1)i(6)

Therefore, the total number of possible choices of the coefficients ui and vi , are

b∑
i=1

(j − 1− i + 1)(q − 1)i + (q − 1)

b∑
i=1

(j − 2− i + 1)(q − 1)i +

...... + (q − 1)b−1
b∑

i=1

(j − b− i + 1)(q − 1)i

which can be written as

b∑
i=1

b∑
l=1

(j − l − i + 1)(q − 1)i+l−1(7)

Thus the column hj can be added provided

qn−k > 1 +

b∑
i=1

b∑
l=1

(j − l − i + 1)(q − 1)i+l−1(8)

For a code of length n , replacing j by n gives the theorem. �

Example 2. Consider a (9, 3) binary code with the 6 × 9 matrix H which has

been constructed by the synthesis procedure given in the proof of theorem 4 by

taking b = 3, n = 9.

H =


1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
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The null space of this matrix can be used to correct all solid bursts of length 3 or

less. It may be verified from error pattern-syndromes table 2 that the syndromes

of all solid bursts of length 3 or less are non zero and distinct.

Table 2

Error patterns Syndromes

Solid bursts of length 1

100000000 100000

010000000 010000

001000000 001000

000100000 000100

000010000 000010

000001000 000001

000000100 100100

000000010 010010

000000001 001001

Solid bursts of length 2

110000000 110000

011000000 011000

001100000 001100

000110000 000110

000011000 000011

000001100 100101

000000110 110110

000000011 011011

Solid bursts of length 3

111000000 111000

011100000 011100

001110000 001110

000111000 000111

000011100 100111

000001110 110111

000000111 111111
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